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Abstract 

A powerful new method based on randomization has emerged recently with great success 
in robot motion planning. Firstly, this consists of preprocessing, in which valid configura- 

tions (nodes) of the robot are generated randomly and a local planner is used to join some 
pairs of nodes, to form a configuration graph. Subsequently, path planning is executed 

by connecting the given initial and final configurations of the robot to two nodes of the 
graph, and finding a path joining these two nodes. Our contributions in this paper are two: 
(a) We describe and implement a new heuristic for node generation, termed cell division, 
based on iterative, but controlled, splitting of the configuration space into smaller cells. The 
heuristic tends to generate more nodes in "harder" regions of the configuration space, thus 
allowing the planner a greater choice of nodes in such regions during path planning, (b) 
We next describe and implement an entirely different approach in randomized preprocess- 
ing, termed ray shooting, in which we randomly generate rays (instead of configurations) m 
the configuration space along which we intend to transport the robot, and join some pairs 
of rays (viewed as nodes) using a local planner, to form a segment graph. Path planning 
then proceeds as before. Our implementation verifies that the planner performs efficiently 

even with minimal preprocessing, since each node in the graph represents a track that may 
transport the robot a relatively large distance through the configuration space. 

Keywords: Motion planning, randomization, heuristic 
Track: Algorithms 

1    Introduction 
Motion planning is one of the most active areas of robotics research. It has been stud- 
ied extensively over the last two decades. Motion planning involves finding a feasible 
(continuous and collision-free) path for a robot from a start configuration 5 to a goal 
configuration g, in some configuration space C whose dimension is determined by the 
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number of degrees of freedom of the robot. All the configurations on a path (as well as, of 
course, s and g) should belong to the subspace Cf of free configurations where the robot 
does not intersect an obstacle. See [3] for a survey of motion planning. 

The classical approaches to motion planning can generally be divided into the following 
classes: skeleton (roadmap), cell decomposition and potential field approaches. 

In the skeleton approach [3,7,8] the free configuration space C/ is reduced to a network 
of curves, and motion planning reduces to a search problem in this network. Examples of 
this approach are the visibility graph [6], Voronoi diagram [7] and silhouette [1] methods. 

In the cell decomposition approach [2, 5, 11] the free configuration space Cf is decom- 
posed into non-overlapping cells. A graph is constructed, where each node of the graph 
corresponds to a cell, and there is an edge between two nodes only if their corresponding 
cells are adjacent. A path from the start to the goal configuration is then constructed by 
first finding nodes in the cell graph that correspond to cells containing the start and goal 
configurations, and subsequently finding a path between these two nodes using a graph 

search algorithm. 
In the potential field approach [3, 10] each configuration is assigned an obstacle po- 

tential as well as goal potential depending on the distance from obstacles and the goal, 
respectively. The potential of a configuration is a weighted sum of the obstacle potential 
and the goal potential. The path to the goal is taken by moving one step at a time in 
a direction (if it exists) that reduces the configuration potential, thus reaching the goal 

configuration which has least potential. 
Each of the above mentioned approaches has its share of advantages and drawbacks. 

The skeleton and cell decomposition approaches, though tending to yield nearly optimal 
paths, become computationally expensive as the number of degrees of freedom of the robot 
(and hence the dimension of the configuration space) increases. With the potential field 
approach, which is typically easy to implement and also yields good paths, the problem 
is that the robot tends to get trapped in local minima of the potential field. 

Recently Kavraki and Latombe [4] and Svestka and Overmars [9] proposed a new 
paradigm based on randomization to reduce computational effort. Their approach con- 
sists of two phases: a preprocessing phase followed by a path planning phase. In the 
preprocessing phase, a predetermined number of collision-free configurations are gener- 
ated randomly in Cf and stored as nodes. Each time a node is generated a local planner 
is used to attempt to connect it to existing nodes that are closer, with respect to some 
metric, than a predetermined threshold value. An edge is inserted between nodes that 
the planner can successfully connect, to form a graph G, called the configuration graph. 
Thus edges in G represent the existence of a feasible path between pairs of nodes. In the 
path planning phase, one first attempts to connect the start configuration s and the goal 
configuration g to some nodes s' and g', respectively, in G. If this is successful one next j=j 
attempts to find a path joining s' and g' in G. □ 

We modify the randomized preprocessing approach, as proposed in [4, 9], by using 
a new heuristic to guide the initial generation of nodes.   We term this the cell division 
approach. Our idea is to iteratively split the configuration space C into cells (i.e., cubes         
of the same dimension as C), examine each cell to determine if it is fully or partially         
occupied by obstacles, and use this information to decide if a node should be generated        es 

in that cell or if the cell should be split further.   This heuristic tends to generate more 
nodes in "harder" regions of the configuration space, such as narrow corridors and near 
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obstacle edges, thus facilitating the movement of the robot in these regions. Experiments 
(simulated, of course) using cell division to move a rod and a disc in a plane amidst 
obstacles yielded positive results. Though the decomposition of the configuration space C 
into cells has, of course, been applied previously to plan motion directly, our contribution 
is to adapt it to generate configurations in C as a component of randomized preprocessing. 

Next, we describe an entirely new approach to randomized preprocessing, the ray 
shooting approach. Ray shooting is dual to that of randomly generating configuration 
nodes: instead of randomly generating configurations, we generate straight rays (or tracks) 
in the configuration space C, along which the robot must travel. The ray segments 
which lie inside obstacles are infeasible and are filtered out. The remaining segments are 
considered as nodes and a local planner is used to attempt to connect nodes that are 
closer, with respect to some metric, than a predetermined threshold value. An edge is 
inserted between nodes that the planner successfully connects to form a graph G, called 
the segment graph. Path planning then consists of first attempting to connect the initial 
and final configurations of the robot to nodes in G and then finding a path in G joining 
these nodes. The major advantage of ray shooting seems to be that each node in the graph 
represents a segment that may transport the robot a relatively large distance through the 
configuration space. Experiments using ray shooting to move a rod on a plane amidst 
obstacles, even with minimal preprocessing, afforded encouraging results. 

Our implementations were in C, on a DEC 5000/260 processor running at approxi- 
mately 80MIPS. A graphical user interface, implemented in X windows, was used to draw 

scenes, specify query positions, and view results. 
Section 2 gives a brief overview of the randomized preprocessing approach. In Section 3 

we describe cell division, and in Section 4 we describe ray shooting. We conclude and 

discuss future work in Section 5. 

2     Randomized Preprocessing Approach 

As mentioned in the previous section, the randomized preprocessing approach [4, 9] con- 
sists of two phases: a preprocessing phase in which a configuration graph G representing 
the free configuration space Cf is constructed, followed by a path planning phase in which 
collision-free paths for the robot between the given initial and goal configuration pairs are 

found using G. 
To give details, in the preprocessing phase, a predetermined number N of free con- 

figurations is generated randomly in Cf and stored as nodes of G. Each time a node 
(configuration) a is generated, we attempt to find a collision-free path for the robot from 
a to some nodes that already exist in G, using a local planner. (The local planner typi- 
cally is an extremely fast but simple planner.) If the local planner is successful, then we 
say a is connected to these nodes.) An edge is inserted between nodes that the planner 
can successfully connect, to form the configuration graph G in which a path between two 
nodes represents the existence of a collision-free motion for the robot between the two 
corresponding configurations. (G may consist of more than one connected component, 

though.) 
Subsequently, in the path planning phase, one first attempts to connect, possibly 

using the same local planner, the start configuration s and the goal configuration g to 



some nodes s' and g', respectively, in G. If this is successful, one next attempts to find a 
path joining s' and g' in G. Of course, such a path exists if and only if s' and g' belong 

to the same connected component of G. 
Since the local planner may not be very powerful, attempts to connect pairs of nodes 

that are "far apart" in Cf are likely to fail, and a number of different strategies have 
been proposed for selecting those nodes for which we attempt connection [9]. All use a 
distance function D among configurations and a constant maxdist, a threshold distance, 

for applying the local planner. Specifically, let 

N(a) - { nodes b : b exists in G when a is generated, D(a, b) < maxdist}. 

Members of N(a) are called neighbors of a. The strategy in which we attempt to connect 
a to all neighbors in N(a) is called the all-neighbors method. In the forest method, on the 
other hand, we attempt to connect a to exactly one node in each connected component 
of G that has at least one node in N(a). A strategy that lies between these two is the 
nearest-k method in which we attempt to connect a to at most k neighbors in N(a), for 
the given k. Among these three strategies, the all-neighbors method tends to give shorter 
paths in the path planning phase than the other two methods. (Since the existence of 
an edge between two nodes indicates that the corresponding configurations are "close" to 
each other, it is usually the case that a path having fewer edges in G tends to represent 
a robot motion in the workspace that is physically shorter.) On the other hand, if the 
length of the paths discovered in the path planning phase is not a concern, the forest 
method gives just as much (transitive) connectivity among the nodes as the all-neighbors 
method does. The heuristic loops method of Overmars and Svestka [9] is an attempt to 
choose additional nodes for connection to get shorter paths in the path planning phase at 

moderate expense. 
One way that we can fail in the path planning phase is that the nodes s' and g' 

to which we have connected the start and goal configurations s and g, respectively, do 
not belong to the same connected component of G. Some heuristics have been proposed 
to decrease this possibility. One suggested by Kavraki and Latombe [4] is to randomly 
generate extra nodes near those nodes in G that have a small degree. (The degree of a 
node is the number of edges incident on it.) Nodes having a small degree are considered 
to be in "difficult" regions of Cf, and thus additional paths (in (?) through such regions 
might connect and thus merge two or more connected components, reducing the total 
number of connected components in G. Another heuristic is the adaptive node adding 
method of Overmars and Svestka [9], in which a node a when generated is not added to 
the graph if it is not considered useful (to save computational resources for processing 
other nodes that are, in fact, more useful), where a is useful if either (1) it is close to two 
different connected components (since a might bridge the two components), or (2) it is 
not close to any node in G (since a lies in an unexplored region). 

Other heuristics include the geometric node adding method of Overmars and Svestka 
[9], where additional "important" configurations are generated in which the robot is near 

the edges and vertices of the obstacles. 
Usually, the paths found in the path planning phase are jagged. They can be smoothed 

using the smoothing technique described in [9]. 
We implemented the randomized preprocessing approach using uniformly random gen- 

eration of configurations and the forest edge-adding strategy, without any of the heuristics 
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Figure 1: Node generation in cell division. 

mentioned above to enhance the performance, which, for future reference, we term the 
KLOS approach.1 (We describe the robots to which KLOS was applied and other imple- 

mentation details in the next section.) 

3     Cell Division 

3.1     Overview 
As described in the previous section, a critical component of randomized preprocessing 
is node (configuration) generation. The motivation underlying the cell division approach, 
as for geometric node adding and adaptive node adding, is to generate nodes in "harder" 
regions, based on a certain heuristic. Our objective is to capture the connectivity of the 
configuration space by adding more nodes near obstacle edges in crowded regions of the 
configuration space, and fewer in sparser regions where it is comparatively easier for the 
local planner to find a path joining two nodes. 

Specifically, in the node generation phase of cell division approach, we first divide the 
configuration space C into cells of side length L. (The value of L, which is determined by 
the designer, is critical to performance and in the next paragraph we discuss factors that 
need to be taken into account when choosing L.) Then each cell is checked to determine 
if it is empty, or fully occupied, or partially occupied by obstacles. If the cell is empty a 
node is generated randomly in it. If the cell is fully occupied it is discarded. If the cell is 
partially occupied by obstacles then it is further divided into 2d (d is the dimension of the 
configuration space) cells of side length L/2, and the process is repeated until either the 
side of each cell is less than some predetermined threshold value e, or until the prespecified 
number N of nodes are generated (this is shown in Figure 1). 

1Thus "KLOS" refers to an implementation of the most basic randomized preprocessing approach, 
and not the best possible strategy one might obtain using the heuristics of [4, 9]. 
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Figure 2: Maximum distance between two configurations in neighboring cells. 

We next discuss certain factors influencing the choice of L. Recall from Section 2 that 
pairs of nodes within a distance of maxdist of each other are considered neighbors, and 
the local planner only attempts to connect some subset of such pairs (to give edges in 
G) in the preprocessing phase, depending on the edge-adding method used. With cell 
division, when the configuration space is of dimension d, two nodes in neighboring cells of 
side length L can be at most a distance of (^/d + S)L apart (see Figure 2). Thus L should 
be chosen to be at most mTd^, in order that the local planner does indeed attempt to 
connect nodes in adjacent cells and keep the number of components of G to a minimum. 
However, smaller L values result in a larger number of cells thereby increasing both the 
preprocessing time and the number of nodes generated in sparse regions (it should be 
noted although such nodes may not be useful in finding a path per se, they tend to 
optimize paths that are found in the path planning phase). A rule of thumb is to use 
larger L values for sparse scenes, and smaller values for more dense scenes. 

3.2    Experiments 

Robots: 
We experimented with two kinds of robots that move on a plane: 

1. Two movers carrying a rod of length 100 pixels at its endpoints. 

2. Three movers carrying a disc of diameter 100 pixels; the movers are fixed with 
respect to the disc and are 120° apart from each other. 

Scenes: 
We experimented moving our robots in three different scenes, Scenes 1-3 shown in Fig- 
ures 3-5. Each scene is a square of side 500 pixels containing obstacles that are polygonal 
pools of water, so that a mover cannot enter such an obstacle, but a rod or disc can 
straddle an obstacle (see Figure 6). Scene 1 contains a large number of small obstacles 
distributed fairly uniformly. In Scene 2 the free space is divided into two parts separated 
by many obstacles. We designed this scene mainly to test whether cell division that tends 
to generate a larger number of nodes in critical regions has an advantage over the uni- 
formly random node generation of KLOS. Scene 3 is similar to Scene 2, except that the 
free space is divided into four parts by the obstacles. 



Figure 3: Scene 1. 

Figure 4: Scene 2. 

Figure 5: Scene 3. 



Figure 6: Valid configurations of a rod and a disc. The dots represent the movers. 

3.3    Implementation Details 

Rod: 
The configuration space is three-dimensional, each configuration being a 3-tuple (x,y,6), 
where (x,y) are the co-ordinates of a distinguished endpoint of the rod, and 9 is its 
orientation. Because of the particularly simple nature of our robot, when implementing 
cell division, we only divide the planar scene into square cells and examine if a cell 
intersects an obstacle. If a cell is found to be obstacle-free, then a configuration of the 
rod having the distinguished endpoint in that cell is generated randomly. The metric 
D measures the distance between two configurations (xi,j/i,0i) and (x2,y2,92) as the 

Euclidean distance ^/(xj - x2)
2 + (j/i - y2)

2 between their distinguished endpoints. We 
used maxdist = 50 pixels for attempting connection using our local planner. 

Our local planner tries two heuristics in order. The second one is tried only if the first 
one fails. If both the heuristics fail, then no edge is added between the configurations. 

1. The local planner tries to move from configuration (xi,j/i,0i) to configuration 
(z2,J/2,#2) by first moving the rod translationally, parallel to itself, such that the 
distinguished endpoint at (xi, j/i) reaches (x2, y2). Then the rod is rotated about the 
distinguished endpoint through an angle of 9X - 92 (see Figure 7(a)). It is checked 
that endpoints do not enter obstacles during either translational or rotational move- 

ment. 

2. This case is symmetric to the previous one, except that the local planner attempts 
rotation before translation (see Figure 7(b)). 

Disc: 
The configuration space again is three-dimensional, each configuration being a 3-tuple 
(x, y, 0), where (x, y) are the co-ordinates of the center of the disc, and 9 is the orientation 
of the line joining the center and a distinguished mover. As in the case of the rod, when 
implementing cell division, we only divide the planar scene into square cells and examine 
if a cell intersects an obstacle. If a cell is found to be obstacle-free, then a configuration of 
the disc having the center in that cell is generated randomly. The metric D measures the 
distance between two configurations (si,yi,0i) and (x2,y2,92) as the Euclidean distance 

J{xi — x2)
2 + (yi — y2)

2 between the positions of the center. We used maxdist = 50 
pixels for attempting connection using our local planner. 
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Figure 7: Movement of rod. 

Figure 8: Movement of disc. 

Our local planner tries to move from configuration (x1? j/i, 0i) to configuration (s2, y2, #2) 
by first moving the disc translationally, without changing the orientation of any mover, 
until the center reaches (x2, y2). Then the disc is rotated about its center until the movers 
occupy the desired positions.  (See Figure 8.) This rotational movement is attempted in 
either direction, if necessary, to avoid collision of the movers with obstacles. 

We apply the forest edge-adding strategy when creating configuration graphs for both 

rod and disc. 
When implementing KLOS for both rod and disc we used the same local planners as 

for cell division. 

3.4     Results 

3.4.1    Data 

For each scene, we generated 1000 source-goal pairs of valid query configurations. (Not 
all of the source-goal pairs, however, may have a collision-free motion of the movers.) If 
in the path planning phase we can find a path for a given source-goal pair, we say the 
query is answered successfully. 

For both the KLOS and cell division approach we tabulated: 

1. N: Number of nodes in the configuration graph. 



2. NE: Number of edges in the configuration graph. 

3. C: Number of connected components in the configuration graph. 

4. T: CPU time in seconds for preprocessing. 

5. SQ: Number of queries answered successfully. 

6. NC: Number of queries that could not be successfully answered because the local 
planner failed to connect either the start configuration s or the goal configuration 

g to the configuration graph. 

7. NP: Number of queries that could not be successfully answered because the nodes 
s' and g' of the configuration graph to which s and g were connected, respectively, 

belonged to different components. 

8. SP: Average length of the paths of the robot (rod or disc) for queries answered 
successfully, where the length of a path is the sum of the distances between successive 

configurations along the path. 

9. TPQ: Average CPU time in seconds to answer a query. 

An example of data we collected is shown in Table 1. The table contains the results 
we obtained for the case of the rod in Scene 3, using the cell division approach, where the 
maxdist is 50 pixels. In this version we do not present further raw data, rather we display 
charts in Appendix A that plot SQ versus N for each of the three scenes, for cell division 
and KLOS, for both the rod and the disc. Charts plotting SQ versus preprocessing time 
T for cell division and KLOS (as well as for ray shooting explained later for the case of 

the rod), are also given in Appendix A. 

3.4.2     Analysis 

We were expecting that, since dividing the configuration space into cells requires extra 
computation, preprocessing time T for cell division would far exceed that of KLOS. In- 
terestingly, we found this not to be the case. For all three scenes, cell division, in fact, 
uses less preprocessing time than KLOS for all values of N. We believe that T tends to 

be less for cell division for the following reason: 
In both KLOS and cell division, as new configurations are generated they are checked 
for validity, and rejected if invalid. This process continues until the number N of valid 
configurations is reached. However, with cell division it seems the probability that a 
generated configuration is invalid is less because no attempts are made to generate a 
configuration (more precisely, to generate the distinguished endpoint of the rod or the 
center of the disc) in a cell that is not obstacle-free. 

Let us analyze the results for the rod carefully (Figures 10-12, 13-15). With one 
exception that we will mention shortly, cell division outperformed KLOS in the number 
of queries SQ answered successfully for all scenes, for small and moderately large values 

of N. 
For Scene 1 (Figures 10 and 13), cell division solves over 800 queries with N=375 and 

preprocessing time of T=1.27 seconds, whereas KLOS starts to solve nearly 800 queries 

10 



Table 1: Results of cell division for the rod in Scene 3 with maxdist = 50 pixels. 
N NE C T SQ NC NP SP TPQ 

125 110 15 0.25 82 823 95 277.08 0.01 

250 203 47 0.63 156 105 739 288.84 0.04 

375 322 53 1.05 179 40 781 291.39 0.08 

500 424 76 2.13 191 19 790 304.16 0.11 

625 551 74 3.27 257 16 727 377.73 0.16 

750 680 70 4.85 821 16 163 1035.36 0.20 

875 807 68 6.64 808 14 178 1038.50 0.26 

1000 929 71 8.63 813 10 177 1039.14 0.33 

1125 1061 64 10.51 895 9 96 1066.44 0.39 

1250 1178 72 13.47 892 8 100 1071.22 0.47 

1375 1301 74 16.13 886 7 107 1071.64 0.57 

1500 1434 66 19.95 920 7 73 1065.27 0.66 

1625 1549 76 22.59 912 7 81 1068.45 0.77 

1750 1661 89 27.10 900 7 93 1070.69 0.88 

1875 1791 84 30.50 917 7 76 1069.28 1.01 

2000 1921 79 33.20 923 7 70 1073.51 1.13 

only after N reaches 875 and T is over 22 seconds. Beyond these points, both approaches 
solve nearly the same number, about 900, of queries. The reason for this seems to be that, 
for smaller N, cell division is at an advantage as it tends to generate a larger number of 
nodes in critical regions. KLOS catches up when N becomes large because, in such cases, 
even "uninformed" random node generation covers critical regions. 

We observe a similar phenomenon for the other two scenes. For Scene 2 (Figure 11 
and 14), cell division seems to "break through" the wall of obstacles and solve nearly 
950 queries with N=625 and preprocessing time of T=1.61 seconds, whereas the same 
happens to KLOS only after N=1000 and T=20.65 seconds. Again, the performance of 
the two approaches in terms of SQ become nearly identical beyond these. For Scene 3 
(Figures 12 and 15), the observation given above still applies, in that cell division solves 
over 800 queries after N=750 and T=4.85 seconds, whereas it is not until N=1500 and 
T=79.78 seconds before KLOS solves over 800 queries. One exception is the case N=625 
when cell division solves about 250 queries while KLOS solves over 600 queries. However, 
generating 625 nodes in KLOS requires over 12 seconds, while 12 seconds is sufficient for 
cell division to generate over 1125 nodes with which it can solve nearly 900 queries. 

The average time TPQ it took to answer queries was almost the same for both cell 
division and KLOS. This seems because graphs for both are of similar sizes. The average 
path length SP is typically slightly more with cell division than KLOS as there are fewer 
nodes available in sparse regions that help optimize path length. 

The results for the disc (Figures 16-18, 19-21) largely follow a similar pattern for 
Scenes 2 and 3, but not for Scene 1. For Scene 1 (Figures 16 and 19), cell division and 
KLOS solve over 900 queries with N=500 and T=2.59 seconds, and with N=375 and 
T=2.81 seconds, respectively. So KLOS outperformed cell division with a small margin 
for smaller values of N. One might speculate that Scene 1 happens to be an "easy" scene 
for the disc of this size, and thus the difference between the two approaches turned out 
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to be insignificant. For Scene 2 (Figures 17 and 20), cell division solves over 900 queries 
with N=750 and T=5.15 seconds, whereas KLOS requires N=1625 and T=47.64 seconds 
to do the same. For Scene 3 (Figures 18 and 21), cell division outperforms KLOS up 
to N=875, but the difference (in terms of SQ) is small. However, cell division uses only 
about 12 seconds of preprocessing time to solve over 900 queries, while KLOS requires 

over 36 seconds. 
In summary, cell division seems preferable when either preprocessing time is at a 

premium or the scene is complicated with many critical regions that the planner must 

break through. 

4    Ray Shooting 

4.1 Overview 

Ray shooting is also a two-phase approach with preprocessing followed by path planning. 
The main motivation for this approach is that it may be possible to move from one 
configuration c to another d, that is far from c, along relatively few straight line segments 
in the configuration space, whereas, with any strategy based on random node generation, 
it is likely that only after a large number of nodes is generated that c and c' would belong 
to the same component. Therefore, it seems intuitive that random generation of straight 
rays (that represent possible trajectories of the robot) would tend to rapidly "cover and 
connect" the configuration space. 

Given this motivation, in the preprocessing phase of ray shooting, we randomly gener- 
ate rays, instead of nodes, in the configuration space. The segments of rays that lie inside 
obstacles are infeasible, and filtered out. The remaining segments are treated as nodes 
of a graph G, the segment graph. Whenever two segments £ and m are "sufficiently" 
close with respect to a given metric, a local planner (again, preferably simple and fast) 
attempts to connect some configuration in £ to some configuration in m. If the local 
planner succeeds, then an edge is added in G between the nodes representing I and m. 

Path planning then consists of first attempting to connect the initial and final config- 
urations of the robot to nodes in G, and then finding a path in G joining these nodes. 

4.2 Experiments 

We applied the ray shooting approach to a robot consisting of a rod with movers at both 
endpoints in the three scenes as described in Section 3.2. 

4.3 Implementation Details 

Again, due to the simple nature of our robot, instead of generating rays in the three- 
dimensional configuration space we generate rays directly on the planar scene. The seg- 
ments of these rays that lie inside obstacles are filtered out and the remaining segments 

form nodes of the segment graph G. 
Our local planner then attempts to move the rod from segment £ to segment m of G 

for every pair of intersecting segments £ and m.  If the local planner succeeds then an 

12 



Figure 9: Local planner for the rod in ray shooting. 

edge is added in G between the nodes representing £ and m. The local planner tries the 

following heuristics in order when attempting to move the rod from /torn. 

• The rod, say AB, moves on and along segment £ until one endpoint, say A, reaches 
the intersection of £ and m, and then the rod is rotated about A until the other 
endpoint lies on m (if necessary, to avoid collision, an attempt is made to rotate in 
either possible direction). See Figure 9(a)-(d). 

• The rod again moves on and along line £ until the center, say 0, of the rod reaches 
the intersection of £ and m, and then the rod is rotated about 0 until it lies on 
m (if necessary, to avoid collision, an attempt is made to rotate in either possible 
direction). See Figure 9(e)(f). 

In the path planning phase, we must first attempt to connect the start s and goal g 
to nodes s' and g1, respectively, of G. This is done as follows: 

First a ray r is "fired" along the rod, in either direction, and the intersections, if any, 
of these rays with segments of G are found. If such an intersection does, in fact, exist the 
local planner is used to attempt to move the rod from r to the intersecting segment £. If 
this fails, the rod is rotated by an angle of 45°, and the process is repeated until the rod 

has turned 180°. 

4.4    Results 

4.4.1    Data 

In our experiments with the ray shooting approach, we again generated 1000 source-goal 
pairs of valid query configurations. We tabulated the following: 
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Table 2: Results of ra> shooting for the rod in Scene 3. 

NR N NE C T SQ NC NP TPQ 

5 11 1 4 0.06 269 512 201 0.01 

10 20 18 5 0.11 324 361 315 0.03 

20 39 60 6 0.28 328 350 322 0.05 

30 58 152 9 0.65 330 344 326 0.11 

40 77 240 9 0.77 338 336 326 0.11 

50 94 377 8 1.30 395 335 270 0.15 

100 181 1587 12 3.42 398 325 277 0.28 

150 275 3688 11 11.80 400 323 277 0.60 

200 357 6222 14 11.99 670 323 7 0.57 

250 447 9885 17 18.44 673 321 6 0.74 

300 534 14255 17 25.56 675 321 4 0.90 

350 626 19729 19 34.96 675 321 4 1.08 

400 710 25150 15 43.45 677 321 2 1.08 

450 800 31956 16 54.64 677 321 2 1.40 

500 889 39529 17 67.49 677 321 2 1.59 

1. NR: Number of random rays generated. 

2. N: Number of nodes in the segment graph (i.e., segments remaining after filtering). 

3. NE: Number of edges in the segment graph. 

4. C: Number of connected components in the segment graph. 

5. T: CPU time in seconds for preprocessing. 

6. SQ: Number of queries answered successfully. 

7. NC: Number of queries that could not be successfully answered because the local 
planner failed to connect either the start configuration s or the goal configuration 

g to the segment graph. 

8. NP: Number of queries that could not be successfully answered because the nodes s' 
and g' of the segment graph to which s and g were connected, respectively, belonged 

to different components. 

9. TPQ: Average CPU time in seconds to answer a query. 

An example of data we collected is shown in Table 2. The table contains the results 
we obtained for the case of the rod in Scene 3, using the ray shooting approach. In this 
version we do not present further raw data, rather we display charts (in Appendix A) that 
plot SQ versus T for each of the three scenes, for cell division, KLOS and ray shooting. 
(Since N represents the number of segments in ray shooting while it represents the number 
of individual configurations in cell division and KLOS, we found it more meaningful to 
compare the three methods using SQ versus T rather than SQ versus N.) 
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4.4.2    Analysis 

As indicated in Figures 13-15 that plot SQ versus preprocessing time T for all three ap- 
proaches we implemented, ray shooting tends to successfully answer more queries than the 
other two approaches when T is very small.-This seems to justify motivations underlying 
the ray shooting approach. Specifically, for Scene 1, ray shooting solves more than 300 
queries with T as little as 0.07 seconds and over 650 queries with T=0.37 (versus 173 
queries at 0.35 seconds for cell division, and 100 queries at 0.5 seconds for KLOS). For 
Scene 2, ray shooting solves 555 queries with T=0.02, while cell division and KLOS solve 
about 400 queries with T=0.16, and about 150 queries with T=0.31, respectively. For 
Scene 3, ray shooting solves 324 queries with T=0.11, while cell division and KLOS solve 
about 80 queries with T=0.25, and about 45 queries with T=0.50, respectively. Average 
time TQP to answer a query was about the same as that for cell division and KLOS. 

Unfortunately, however, the performance of ray shooting seems to level off rather 
quickly as the number NR of randomly generated rays increases. (Charts plotting SQ 
versus NR are not included in this paper, but the reader can see the level off in Figures 13- 
15.) Specifically, SQ remains slightly over 700 beyond NR=100 for Scene 1. For Scene 2, 
SQ is as large as 555 even for NR=5 but it remains essentially the same even for NR=500. 
For Scene 3, SQ remains about 670 beyond NR=200. This is not very surprising for 
Scenes 2 and 3, since ray shooting does not seem to be particularly suited for breaking 
thorough the barriers of obstacles. For Scene 1, we expected the performance of ray 
shooting to continue to improve as NR becomes larger. We do not as yet fully understand 
the reason for this, but suspect it relates to the length of the rod relative to the complexity 
of the scene (i.e., SQ should level off at a higher value if the rod is shorter). 

In summary, ray shooting seems a promising new approach that seems to yield an 
efficient graph for the path planning phase with minimal computational effort in the 

preprocessing ptase. 

5     Conclusions and Future Work 

We have proposed a new heuristic, cell division, for the configuration generation phase 
of randomized preprocessing, as well as an entirely new approach to randomized pre- 
processing, ray shooting. Experimental results for both seem promising and support 

expectations. 
Future work includes: 

1. Improving local planners to enhance the performance of both cell division and ray 
shooting in moving the rod and disc. 

2. Applying both cell division and ray shooting to other robots. 

3. In particular, experimenting with ray shooting in higher-dimensional configuration 
spaces, where we must deal with skew lines, and surrender the advantage of inter- 
secting line segments that we had when moving a rod on a plane. 

4. A hybrid approach combining cell division and ray shooting, motivated by the ob- 
servation that cell division should be effective in denser regions, while ray shooting 
is likely to be effective in sparser regions where ray segments tend to be longer. 
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5. Most importantly, theoretical verification of our experimental results. 
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A     Simulation Results 

Figures 10-12 show charts plotting SQ versus N for the rod in Scenes 1-3, respectively, 

by cell division and KLOS. 
Figures 13-15 show charts plotting SQ versus T for the rod, by cell division, KLOS 

and ray shooting. 
Figures 16-18 show charts plotting SQ versus N for the disc, by cell division and 

KLOS. 
Figures 19-21 show charts plotting SQ versus T for the disc, by cell division and 

KLOS. 
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Figure 10: Rod, SQ vs. N, Scene 1. figure Figure 14: Rod, SQ vs. T, Scene 2. 

SQ. 

1000 I 

500 7S0 1000 1230 1500 1750 2000    N 
ai oj ai w as a6 a7 as a9   12   4 

6    I    10   12   14   Ifi   18   20   22   T 

Figure 11: Rod, SQ vs. N, Scene 2. 
Figure 15: Rod, SQ vs. T, Scene 3. 
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Figure 12: Rod, SQ vs. N, Scene 3. Figure 16: Disc, SQ vs. N, Scene 1. 
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Figure 13: Rod, SQ vs. T, Scene 1. Figure 17: Disc, SQ vs. N, Scene 2. 
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Figure 18: Disc, SQ vs. N, Scene 3. 
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Figure 19: Disc, SQ vs. T, Scene 1. 
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Figure 20: Disc, SQ vs. T, Scene 2. 
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Figure 21: Disc, SQ vs. T, Scene 3. 
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